Infection Biology


General Microbiology
Head: Prof. Regine Hengge
Research focuses on signal transduction networks and gene regulation in nutrient-limited non-growing, but highly stress-resilient bacteria and bacterial biofilms. In particular, molecular functions of second messengers such as cyclic-di-GMP in orchestrating bacterial multicellularity and its emergent properties are studied. Furthermore, we collaborate with designers, material scientists and cultural historians in interdisciplinary projects.


Molecular Microbiology
Head: Prof. Marc Erhardt
Bacteria use a complex macromolecular machine, the so-called flagellum, to move in liquid environments. Flagella-mediated motility is also important for the pathogenicity of many pathogens such as Salmonella. We employ genetic engineering, biochemistry and fluorescent microscopy techniques to understand the regulation, self-assembly and protein export mechanisms of this fascinating nanomachine.


Microbial Synthetic Biology
Head: Dr. Gita Naseri
We are dedicated to developing a synthetic biology toolbox for bacteria, fungi, and yeast, to understand cellular function and harness the potential of cells for metabolic engineering and sustainable manufacturing.



Molecular Parasitology
Head: Prof. Kai Matuschewski
Eukaryotic pathogens, e.g. protozoa and helminths, are integral parts of ecosystems, and >50% of all recent animals adopted a parasitic life style. A molecular understanding of the mechanisms that drive arthropod-borne transmission, parasite stage conversion, and immune evasion are central for innovative evidence-based strategies for drug and vaccine development.


Molecular Genetics
Head: Prof. Christian Schmitz-Linneweber
We are investigating the genetic and molecular basis of nuclear-organellar interactions in plants and apicomplexan parasites. Specifically, we study novel eukaryotic RNA binding proteins used by the cell to manipulate chloroplast and mitochondrial RNAs - essential processes for setting up the respiratory chain and the photosynthetic machinery.




Plant Evolution and Biodiversity
Head: N. N.
We study interactions between plant parasites, their hosts, and the abiotic environment using experimental-genetic and evolutionary-ecological methods to understand the feedback loops driving parasite-host-environment adaptation. The lab develops resources to identify pests from environmental samples and engages in forest genetics research. We also actively commit to the conservation of native plants through citizen science projects.